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SOME MATHEMATICAL PROBLEMS OF THE BATDORF-BUDIANSKY-MALMEISTER 

THEORY OF PLASTICITY* 

S.B. KUKSIN 

The Batdorf-Budiansky-Malmeister theory of plastic slip (the BBM theory) 

/l-3/, written in increment velocities in the Malmeister form, is 
considered. The properties of the corresponding equation of state 

efj = a, jkha;h + (5 ““:. ; ;j7i .(a,a)+$ dn a ) Kh (0.1) 
0 

are studied. 
Here Wjkh are the constants of elasticity, eij is the strain rate tensor, okh is the 

stress tensor, C?kd is its rate of change, Tj=Tj(ni, flkh) iS the tangential stress on an area 
with unit normal ni, a 0% 0) is a certain function, and o is the domain on a unit sphere consist- 
ing of those normals nl for which irl> c,and d171 /dt>O. 

Formula (0.1) yields a mapping that compares the tensor eij(t) with ail(O) and the tensor 
aij(t) differentiably dependent on the time variable t. The smoothness of this mapping and 

its fundamental properties are studied , and the correctness of the inverse problem of finding 
the tensor u+j 0) by means of eij (t) and uij (0) is proved. 

The methods developed in the paper are applicable to modifications of the BBM theory that 
differ from (0.1) (see /2/ apropos of these modifications). 

1. The equation of state. The coefficients of elasticity in (0.1) are symmetric and 
elliptic, i.e., 

aijkh = akhij = ajikh (1.1) 

qjkhbfjukh > GUfjafj, 6 > 0, VU E 1 

where I is the space of symmetric (3 X 3)-matrices. The function a(n, 0) is non-negative for 
nEo and has the follows form: 

a (n, a) = a, (n, u, I z (n, u) 12 - c*y, a, (n, (I, 0) = 0 (1.2) 

where a, is a continuously differentiable function (see /l/, /2/, p.118, /3/). We use the 
notation 

af jkh (U, U') = s nk=h + nhTk dn 
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0 

where, as in (O.l), dn is the differential of the surface of the sphere 

S*=(nERSIInI=l} 

We rewrite (0.1) as a differential equation in skh(t) 

afjkhoih + aflkh (a’, 0’) 6 = 8iJ 

we supplement it by the initial condition 

‘JfJ (0) = %J 

and we assume the tensor &J(t) to be continuous 

etJ @) E c (0, to; I)? to > 0 

The main result of Sec.2, Theorem 5, asserts that (1.4) is solvable for 

Ufj’(t) = &&;1, (efj (t)) 

and the mapping 

(1.3) 

(1.4) 

(1.5) 

(1.6) 
, 

cij, i.e., 

(1.7) 

satisfies the local Lipschitz condition. Because of the assumption (1.6) and the knownresults 
about the solvability of ordinary differential equations, we obtain that the solution of 
problem (1.7) and (1.5) exists local+y and is unique. 
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TO prove that the solution exists in the whole segment P* hll we introduce a scalar 

product and norm in the space 1 

(a, rfz ICI Ui~%~, II o II2 = (oT, 01, 

and we multiply (1.4) by &j(t) scalarly in 2 

%jkkUkhUtj’ f @i jkhakhatj’ = &ij%j‘ 

Since the function a(a, n) is non-negative in the set 0, then 

ajfih (CT, U’) UbiUij' = 
0 

(1.8) 

(1.9) 

We obtain an a priori estimate of the solution from (l.l), (1.8) and (1.9) 

and the solution of problem (1.41, (1.5) exists globally. 

Theorem 1. If condition (1.6) is satisfied, problem (1.4) and (1.5) has a unique contin- 
uously differentiable solution (TtJ (t), O,< t< h 

Remark. Since (1.4) is equivalent to an ordinary differential equation with a non-linear- 
ity satisfying the local Lipschitz condition, the approximate solution of problem (1.4) and 
(1.5) can be found by the method of Euler broken lines. Here 

(1.10) 

where a'is the solution of (1.4) for 

a=+*+), eij = aij (h +). 

The sequence obtained as fl-+w approximates the value of the exact solution at the 
points t,rlN, 1 (r<N. It follows from Theorem 4 (see below) that the U' in (1.10) is the 

solution of the variational problem about minimizing a convex coercive functional in the 

Therefore finding the tensor o (t)numerically 
problems. 

2. Smoothness of the tensor allrh(a, a'). 
productand norm in R3, and a(s) vector WV* 
u(n) - <u(nf,n>n, and hence for 1 n \ = 1 we have 
means O=UrjJ 

reduces to solving a number of variational 

Let <-, *> and 1 * 1 denote the scalar 

where UE 1 and nER3. Then 1: (8, 0) = 
1% (n, 4 Ia =.<a (n), u(n)> - <a(n), n>". This 

02 

a)-<d(n), n>- <a(n), n>'-aer 

%b R a, v’f - <v (4, a’ (d> - <a W, n> <a’ h n> 
The boundary of the domain o1 is a smooth curve for those (a,#) for which the aradient 

of the function 
the system 

is solvable, is 
, Since v'is 

~2~ is a smooth 

-%l in nE S" does not vanish on 8cp,. The set &'of.those (f&U') fir which 

jn/a= 1, pp1 (n, V) = 0 (2.1) 
aP (n) - 2 <v(n), n> v (n) - xn = 0 

the complement to this set. 
not in system (2.11, then mr=eO X 1. Similarly, the bondary of the domain 
curve for (Q, 0') e ms, where m, is the set of those (Vs V*) for which the 

following system is solvable 
ln$= 1, * (n, u, u') - 0 (2.2) 
(uu' + u'v) n - 2 (0 (n), n) u' (n) - 

2 (0' (n), n) u(n) - xn = 0 
Let Mt CR" be an algebraic set of solutions of system (2-l), t=i,Z. Then &is the 

projection 0fMion E X E-RR"" and according to the Zaidenberg-Tarski theorem /4/, will be a 
semi-algebraic set, i.e., a set of the form 
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(2.3) 
jQl{ZEA12)pjl(I)=. . . =Pja(j)(5)=o; 

Qjl(~) i 0, * . .P qJb!j) (XI > 01 

r > 1, a (i), b (i) > 0; a (i) f b (i) > 1 

@j&r qjk are polynomials). The set Mi CR'" satisfies five equations. Hence, it is natural 
to except that dimMf== 16-5==11, and therefore, dimmt & dimMt =I1 (dim is dimension- 
ality) . 

Lennnal.The dimensionality of the semi-algebraic setmtis not greater than 11; i = 1,2. 
A detailed proof of the assertion of the lemma is awkward and fairly traditional. We 

present a sketch. 
1) i= 1. We recall that m,= mm x 1. By direct reasoning we see that ml,, is contained 

in the set of symmetric 
dim m,, < 5. 

2) i = 2, We will 

2-tensors for which two dertain eigenvalues agree. Consequently, 

eliminate x from system (2.2) 

(aI+ + 0'0) n + 2 <a'@), 5 (n), R - 2< u (n), *) 0 (n) - 
2 <a'(n), ?I> a (n) = 0 

IsIP= 

(2.4) 

Let M(n) be the algebraic set of solutions of this system for fixed R. It is sufficient 
to show that dim Y (n) d 9. To do this, we select an orthonormal coordinate system in R'with 
unit direction e, equal to n. System (2.4) can be rewritten in the form 

Y(O)+'n, al*', &') = ? (a, 0il'), i, i = 2, 3 (2.5) 

where ~(a) is a (3 x 3)-matrix and ? E RS. It can be confirmed directly that the sets 

{oIrky(a)=f), i=3, 2, 1, 0 

have a dimensionality not higher than 6, 5, 4, and 0, respectively. For u from these sets 
the dimensionality of the space of solutions @n',%~'~ %3') of (2.5) is not higher than O,l, 2, 
3, respectively. Consequently, M(n) is contained inthe union of surfaces of dimensionality not 
greater than 9, from which dimM(n)Cg. 

Let m= mlU mp. It follows from the lemma proved there that m is a semi-algebraic 
manifold in whose representation in the form (2.3) there are no non-empty sets with a(j) = 0. 

Lemma 2. The 

Proof. It is 

since (~(j)>i for 

Corollary 1. 
in not more than a 

The assertion 

set m is contained in all ll-dimensional algebraic manifold m,. 

sufficient to set 

all j. 

m0 = $J {I I Pj1 Cz) = . . . = Pja(j)(') = OI 

The set m intersects almost every line in 1 X 1 parallel to the given line 
finite number of points. 
follows from the lemma and can be obtained by applying general facts about 

algebraic geometry. We will present a direct proof without using the concepts of algebraic 
geometry. 

Let P be a vector in 1X 1,s an orthogonal complement of P and II: 1X l-x, an operator 
orthogonal to the projection on s. Then the set of lines parallel to P is found to be in 
one-to-one correspondence with the elements of II. Let m, be the algebraic set from Lemma 2. 
It is known (/5/, Corollary (2.6) that mo=mlU...Uma,where mj,lg~<s are non-intersecting 
smooth manifolds. By virtue of Lemma 2 it can be assumed that dim m'<lO for i<s, and 
either dimm'= ii, or m'= @. Let ~1Cx denote the set Il (m'lJ . . . lJm”-I).. and bCn the set 
of cirtical values for contraction of the mapping of II on mS(/6/,p.189). By virtue of the 
Sard lemma /6/, the set p~lJ&Cn has a null ll-dimensional Lebesgue measure. If -+dlu11*), 
then the line IV1(z) does not intersect the sets ml,..., m’-‘, while the set mS intersects not 
more than a countable number of points /6/. On the other hand, since n-1 (2) n no is an alge- 
braic subset of the real line n-lb), it is either finite or equal to n-w. Consequently, 
each line IV1(z),z=n\(plUh) intersects the setmb 0 in not more than a finite number of points, 
and the corollary is proved. 

Let bij(a, u’) denote the tensor 

bij (U. U’) c Uijkh (~7 u’) u;, = S &j (n* UI U’) ‘n (2.6) 
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It follows from the form of the tensor &t and from condition (1.2) that 

fit&, u, CT') = 0, vn E am (2.7) 

Lemma 3. The tensor b,$(a, u') is continuous in l X 1. 

Proof. If (e(l), ~'(1)) is close to (J*), 0'(z)) then *p0 (n, 0(l), e'(l)) is close toqpp (n, u(*), 0'@)), q = 1, 2, 
while the tensor @ii (n. a(l), s'(l)) is close to the tensor bil (n, @), u ‘@)) uniformly in n E St. Con- 
SeqUently, the contribtion to f’iJ( a@), o(‘))tq= i,2 from the integrals over the domains 0 (G(1), 

U'(l)) fi 0 (S(2), pi') are close. 
We have 

$5 (n. JLx)) > 0 , 9, (n , u(P)) Q 0 
in the set o, (a@))\ ~~(a@)), where a = i, b *= 2, or a = 2, fi = i. 

Consequently, everywhere in o, (u@‘))\ol (a@)) the functions $,(-,6's)) are uniformly small, and 
by virtue of (1.2) and (2.6), the tensors sij (, , o(@, I’), 4 = i,,2 are small. Therefore, the con- 
tributions from the integrals over o, (@)‘\y (@) to bif @'Q'~ a(q)> are small. Similarly, the 
contributions from the integrals over the domains o* (o(a), e'(a))\ e* {e's', ,'<Pf are small, from 
which the desired continuity follows. 

Lemma 4. Everywhere in the domain 1 X I\ m, the tensor b,*(a,.a') has first derivatives 
bounded uniformly for 11 Q/I < c, // 0'11 <c. The following formulas hold: 

(2.8) 

F bij(~, ~')=aijpq(~t [I') (2.91 
‘Iw 

Proof. Let (5 + TV, 5’) E 1 X f \ me for 0 < z < xe. Let o(r) denote the set s (c-t- R@), u'). 
Then 

bij (a + r~'l', b')-bij (5, 5') =D 
$ 

pij(n, (I +ra('), o')- 
@ 0) 

Bij (n, ', ")dn+ f &j(R,d+ra('),o')dn 
I)0 

(2.10) 

where the second integral is taken over the algebraic difference in the sets be= m(s)- *(of, 
i.e., the integral over o(%)\@(O) is taken with a plus sign, and over e(O)\o(s) withaminus 
sign. 

The first integral in (2.10) equals 

(2.11) 

To estimate the second integral, we note that V,\p,(n, a, a')$=0 for nE$oj. Consequently, 
for O<r,el the set i Aal is contained in a cr-neighbourhood of the boundary of the set 
o (0) and mes I Ao 1 < cg. On the other hand, by virtue of (2.7) the inequality B&l (a, a + roQ), 
a')l<~r holds in the cr-neighbourhood of the set am(T). Consequently, the second integral 
in (2.10) is O&Z), from which equality (2.8) also follows from (2.11). Equation (2.9) can 
be proved similarly. 

Let the pairs of tensors wl, w, E 1 X 1 be such that the line W1 + tws intersects the 
set m at a finite number of points. Then the tensor b,,(w, $tws)is continuous in t, and has 
everywhere except at a finite number of points a derivatrve uniformly bounded for uniformly 
bounded t. Therefore, this tensor equals the integral of its derivative with respect to t, 
and consequently is absolutely continuous. The set of points (wl, w%) with the necessary 
properties is compact in (1 X 1)' because of Corollary 1. According to Lemma 4, the deriva- 
tives of the tensor blf are bounded in bounded sets. This means the tensor bil (a, u’) satisf- 
ies the local Lipschitz condition. 

Theorem 2. The tensor bt~(u,u') satisfies a local Lipschits condition in EXL. Its 
first derivatives exist almost everywhere and are given by (2.8) and (2.9). 

Let us determine the mapping b,: 1+ 1, p+bii(o, p). 

Theorem 3. The mapping b,is monotonic, i.e., 

(b, h) - bn (rpf, ~1 - rcp)l > 0, '+%, 'CI E I 

Proof. Let us fix v E 1. Then for almost all (& a) E l X 1 , the following computation 
holds: 



22 

in which (2.9) was used as well as the fact that the mapping l-+1, v~~-fa~fkh(o, p)vrh is not 
a negative selfconjuage mapping. Now, the monotinicity of the mapping bofollows from its 
continuity. 

Theorem 4. The function 

(2.12) 

is continuously differentiable with respect to U' everywhere in 1 X 1 and is a potential for 
bil ((J, Q’), i.e., 

a Cp ((T1 U’) = bij (Ut U') 
aatj 

(2.13) 

Proof. Since the integral in (2.12) equals zero in the set do, the reasoning from the 
proofs of Lenma 4 and Theorem 2 are applicable to (2.12). Hence, the function Cp(U, U') is 
continuous, absolutely continuous in almost all lines, and (2.13) holds almost everywhere. 
But the tensor bij(u, a’) is continuous, hence, (2.13) is satisfied everywhere and the function 
cp is continuously differentiable with respect to u'. 

Let Uffkh be the coefficients of elasticity just as in (1.1). We obtain from Theorems 
2 and 3 and the properties of monotonic mappings (/7/, Ch.3, Sec.2). 

Corollary 2. For any Ue 1 the mapping 

&I: 1 + I, pt] + %kh pkh + b,, ((Jv p) 

satisfies the Lipschitz condition and has the reverse mapping Bd, which also satisfies the 
Lipschitz condition. 

Let r, p(l), p (2) and u (1), u(2)E 1 be such that B,(j) (p (I)) = Z, i = 1,2. Thenbyvirtue 
of (1.1). 

(2.14) 

Moreover, multiplication of the equation 

at/kh (p (1) - P (?)kh = - b ((J (I), P (1)) -i- b (a (I), P (2)) -b (0 (I), P (2)) f b (0 (2), p (2)) 

by p (1) - p (2) scalarly in I using inequalities (l.l), (2.14), the monotonicity of bo(I) and 
Theorem 2, yields the estimate 

S I/ p (1) - p (2) 11* < (b (U (2), p (2)) - b (U(i), I" (2)), 

CL (1) - p (2)),<K II U (1) - U (2) II I) P (1) - P (2) II 

where the constant K depends on Ilu(l) Ilu(2)1l,II r 11. The assertion is obtained. 

Theorem 5. The mapping l X l-+ 1, (a, p)- B,,-l(p) satisfies the Lipschitz condition in 
the variable p and the local Lipschitz condition in the variable U. 

The author is grateful to R.V. Gol'dshtein who drew his attention to the BBM theory and 
assisted in numerous 'discussions, and also to A.N. Mokhel' for a number of useful comments. 
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